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Abstract

In this paper, we propose an adaptive edge detection technique based on scale multiplication in odd Gabor transform domain
(ESMG). With adjacent scale multiplication in odd Gabor transform domain, a sharpened edge response output is obtained, which
can more effectively resist the inverse influence from noise contamination on the performance of edge detector. Based on odd Gabor filter
with single scale, it is shown that Rayleigh distribution can be feasibly adopted to model the real pdf of edge response. Thus the pdf of
sharpened edge response output can be approximately modeled by an exponential distribution since there exists strong correlation
between two edge response outputs with two adjacent scale factors. In determining the threshold for the sharpened edge response, an
adaptive strategy is applied, in which the nonlinear relation of the threshold with the mean and variance of exponential distribution
is exploited. Moreover, an optimization problem is finally formulated to find the adaptive adjustment factor. The experimental results
on both synthetic and real world natural images show that our scheme is robust and takes on good edge detection performance.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Edge detection, which has attracted the attentions of
many researchers, is one of the most important areas in
lower level computer vision because the success of higher
level processing such as object detection, object recogni-
tion, and scene interpretation relies heavily on good edge
detection. Generally, edges are referred to those pixels
around which there is a large gray variation. Most existing
edge detection methods are gradient-based, such as some
simple edge detection operators Roberts and Sobel as well
as some sophisticated operators Canny [1] and Susan et al.
[2]. An overview of edge detection techniques was given in
[3]. Some new developed edge detection algorithms can be
found in [4,5]. In this paper, we focus on the multi-scale
analysis of odd Gabor transform to develop a new edge
detection technique.
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Gabor transform, or named by short time Fourier trans-
form (STFT), can obtain the lower limit of joint time-fre-
quency resolution under Heisenberg Uncertainty
Principle. Daugman [6] has taken a deeply investigation
on it from the view of visual nerve perceptibility and found
that the receptive profile of simple cells in mammalian visu-
al systems can be closely fitted by two-dimension Gabor
function. Now two-dimension Gabor transform has
obtained comprehensive applications in computer vision
field such as image segmentation, object recognition, and
so on.

Under Canny’s three optimal criterions for edge detec-
tion, R. mehrotral [7] pointed out that odd Gabor filter
has good edge detection performance. In real applications,
as suggested in [7] a simple edge operator should be used to
estimate the gradient orientation. Thus the estimation error
based on the above simple edge operator, which generally
is high especially in the noise case, will largely influence
the accurate construction of the odd Gabor filter templates.
In addition, we cannot implement the convolution between
odd Gabor filter and the input image by using FFT since
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each pixel corresponds to different odd Gabor filter
template.

Multi-scale analysis is a popularly adopted technique in
computer vision. A systematic analysis for multi -scale
space theory has been given by Tony Lindeberg [8]. The
applications of multi scale in edge detection can be dated
back to Marr and Hildreth’s work [9]. Based on the frame-
work of Canny [1], some techniques for edge detection
based on multi scale wavelet transform have been devel-
oped [10–12]. In addition, Park et al. [13] have proposed
a region based multi scale edge detection method. Recently
Zhang [14] extended the ideas of Xu [15] and Sadler [16]
and proposed a scale multiplication based edge detection
scheme, in which adjacent scales are multiplied in wavelet
domain to sharpen the edge responses. In our work, the
similar scale multiplication idea was applied to the odd
Gabor transform domain, but a more favorable edge
response output energy function was presented.

Voorhees et al. [17] pointed that the derivative based
edge response can be fitted by Rayleigh distribution, which
is also shown in our work to be applicable for odd Gabor
filter based edge response. Thus the pdf of sharpened edge
response output can be approximately modeled by an
exponential distribution since there exist strong correlation
between two edge response outputs with two adjacent scale
factors. Moreover, an adaptive threshold determining
scheme is proposed based on the analysis of the pdf of
sharpened edge response output.

This paper is organized as follows: Section 2 gives an
introduction to odd Gabor based edge detection and pro-
poses an improvement on it. To sharpen the edge response,
a scale multiplication in odd Gabor transform domain is
proposed and a more favorable edge response output ener-
gy function is given in Section 3. In Section 4, we theoret-
ically analyze the sharpened edge response output energy
distribution property and propose an adaptive threshold
selection scheme. Some experimental results of synthetic
and natural images are presented in Section 5. Finally we
give our conclusions in Section 6.
2. Odd Gabor filter based edge detection

Gabor filters, which have been shown to fit well the
receptive fields of the majority of simple cell in the primary
visual cortex [6], are modulation products of Gaussian and
complex sinusoidal signals. A 2D Gabor filter oriented at
angle h is given by:

Gðx; y; rg;x; hÞ ¼ gðx; y; rgÞ � exp½jxðx cos hþ y sin hÞ� ð1Þ

where gðx; y; rgÞ ¼ 1
2pr2

g
exp½� 1

2r2
g
ðx2 þ y2Þ� is a Gaussian

function, rg is the standard deviation of the circle Gaussian
along x and y, and x denotes the spatial frequency.

Fig. 1 shows the even real and odd imaginary parts of a
2D Gabor filter. The Gabor transform on the input image
I(x,y) is denoted as:

T ðx; yÞ ¼ Gðx; y; rg;x; hÞ � Iðx; yÞ ð2Þ
where * denotes two-dimensional convolution operator.
When xÆr � 1 and h is perpendicular to the edge, i.e.
h(x,y) = oI(x,y)/oy/oI(x,y)/ox, the odd Gabor filter Go

(x,y,rg,x,h) (the imaginary part of Gabor filter, OGF)
has been shown to be an efficient and robust edge detector
[7] which offers distinct advantages over traditional edge
detectors, such as Roberts, Sobel, etc., and can be compa-
rable even superior to Canny edge detector [1] generally
thought as an optimal edge detector.

In filter based edge detection, the filter’s smoothing
property is crucial for eliminating the inverse influence
from noise contaminating. For odd Gabor filter as dis-
cussed in [7], it also has such smoothing property and we
have the following proposition

Proposition 1. Let Go(x,y,rg,x,h) to be a 2-D odd Gabor

filter and g(x,y,rg) to be a Gaussian smoothing function with

scale rg. When Go(x,y,rg,x,h) is convolved with g(x,y,rg),

another odd Gabor filter Goðx; y;
ffiffiffi
2
p

rg;x=2; hÞ will be
obtained, i.e. we have
c � Goðx; y; 2rg;x=2; hÞ ¼ Goðx; y; rg;x; hÞ � gðx; y; rgÞ

where c is a constant (see Appendix A for detail). One point

is that there exists a slight mistake for the proof appeared in

[7].

As mentioned in [7], at each pixel some simple edge
detectors, e.g. Sobel edge detector, will be utilized to esti-
mate h that is perpendicular to the edge direction, and then
it is used to construct the odd Gabor filter template at that
pixel. Thus for an m · n image I(x,y), it is computationally
expensive to construct m · n odd Gabor filter templates
which are applied to convolving with I(x,y). One can build
a look-up table of odd Gabor filter templates with the par-
titioned h, thus we need only to construct 36 odd Gabor fil-
ter templates globally if h is partitioned by 5�. Even so, we
still cannot implement the above convolution by using Fast
Fourier Transform (FFT) since each pixel corresponds to
different odd Gabor filter template; in other words, all
odd Gabor filter templates here are ‘local.’ In addition,
the error influence brought by the estimation of h will be
crucial for constructing odd Gabor filter templates espe-
cially in the case of noise contamination. Aiming at the
above mentioned problems, here only hi ¼ ði�1Þp

2
; i ¼ 1; 2

are considered without need to estimate h at each pixel,
thus we have odd Gabor filter at rotation angle hi:

Gi
oðx; y; rg;x; hiÞ ¼ gðx; y; rgÞ � sin½jxðx cos hi þ y sin hiÞ�

ð3Þ
For a given input image I(x,y), the edge response output
energy E (x,y) and the phase angle A (x,y) are defined as

Eðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

½Gi
oðx; y; r;x; hÞ � Iðx; yÞ�2

r
ð4Þ

Aðx; yÞ ¼ arctan
G2

oðx; y; rg;x; h2Þ � Iðx; yÞ
G1

oðx; y; rg;x; h1Þ � Iðx; yÞ

" #
ð5Þ



Fig. 1. (a) Even part and (b) odd part of 2D Gabor filter.

70 Z. Zhu et al. / J. Vis. Commun. Image R. 18 (2007) 68–80
Since all Gi
o s can be thought as ‘global’, thus the convolu-

tion between the input image I(x,y) and Gi
o s can be imple-

mented by using FFT.

3. Scale multiplication in odd Gabor transform domain

Multi-scale method is a commonly adopted technique in
computer vision. Here, we form the multi-scale odd Gabor
filter as

Gik
o ðx; y; rg;x; hiÞ ¼ 2�2kGi

oð2
�kx; 2�ky; rg;x; hiÞ ð6Þ

where k 2 Z is the scale factor and i 2 [1,2] denotes orien-
tation index.

Following the idea of Zhang [14], Xu [15] and Sadler
[16], an adjacent scale multiplication in odd Gabor trans-
form domain is performed to obtain a sharpened edge
response output Ej

sðx; yÞ, and we have:

Ej
sðx; yÞ ¼

YjþJ

k¼j
Ekðx; yÞ ð7Þ

Ekðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

½T k
i ðx; yÞ�

2
r

ð8Þ

where Ek(x,y) is the edge response in scale k and
T k

i ðx; yÞ ¼ Gik
o ðx; y; rg;x; hiÞ � Iðx; yÞ.

As pointed in [14], it is feasible to adopt only two adja-
cent scales, i.e. J = 1, thus we can define the phase angle
As(x,y) of the sharpened edge response, which will be
applied to post-processing for edge response, as

Aj
sðx; yÞ ¼ arctan

sign½T j
2ðx; yÞ� �

QjþJ
k¼jT

k
2ðx; yÞ

��� ���
sign½T j

1ðx; yÞ� �
QjþJ

k¼j
T k

1ðx; yÞ
�����

�����

0
BBBB@

1
CCCCA ð9Þ

Note that our definition of Ej
sðx; yÞ is different from

Zhang’s [14], which was given as:

Ej
zsðx; yÞ ¼

ffiffiffiffiffiffiffiXq
i
P j

iðx; yÞ ð10Þ

where P j
iðx; yÞ ¼

QjþJ
k¼jT

k
i ðx; yÞ P j

iðx; yÞ > 0
0 else

:

�
In their

case, the summation is conducted over the mutual relative
function (scale multiplication across adjacent scales)
instead of self-relative function as in Fun. (4). However,
the sharpened edge response shown in Fun. (7) can be
obtained by directly applying the scale multiplication strat-
egy on the edge response outputs under adjacent scales.

Thus compared with the one of Ej
Zsðx; yÞ, the output range

of edge response can be enlarged greatly by order of
square, which will make the following threshold determin-
ing for discrimination of edge pixels from non-edge pixels
more reliable. Fig. 2 shows the one-dimension sharpened
edge response and the output energy with different defini-
tions by Zhang and us. As we can see that more noises with
different SNR can be suppressed by our scheme than
Zhang’s in the case of Gauss white noise added signal,
which enables our definition advantage over later since it
is more favorable for sharpening edge response. Here, the
signal-to-noise ratio (SNR) is defined as SNR = (S/rw)2,
where S denotes the step height of synthetic signal, and
rw denotes the variance of Gauss white noise added on
the noise-free synthetic signal. What we should note is all
the outputs in the Fig. 2 are all normalized to 0–1.

4. The adaptive threshold determining for sharpened odd

Gabor response

4.1. Rayleigh distribution of edge response based on odd
Gabor filter

In [17] Voorhees et al., have pointed that the derivative
based edge response can be fitted by Rayleigh distribution.
For the first derivative property of odd Gabor filter, the
odd Gabor filter based edge response E (x,y) can also be fit-
ted well by Rayleigh distribution. To evaluate the degree of
fitness between the real pdf p(x) and the estimated distribu-
tion q(x) of odd Gabor based edge response, the Bhattach-
arya distance is adopted as similarity measure, and we
have:

spðxÞ;qðxÞ ¼
Z þ1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
dx ð11Þ

Let pj(x), pj+1(x) be the real pdfs of Ej(x,y) and Ej+1(x,y)
with scale factors j and j + 1, and qj (x), qj+1(x) be the cor-
responding estimated Rayleigh distribution. The Bhattach-
arya distance based similarities between them are denoted
as spj;qj

and spjþ1;qjþ1
respectively. Here, j = 0 and rg = 2.5

are kept consistent across the proposed scheme.
To verify the assumption of Rayleigh distribution for the

odd Gabor based edge response, a sub database of 1000



Fig. 2. One-dimension sharpened edge responses and output energy.
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images from Corel database with 10 classes and 100 images
for each class has been collected. In addition, the cases of
images contaminated with Gauss white noise are also con-
sidered (only rw = 0 and rw = 0.1 cases are given as in
Fig. 3). Fig. 3 shows the histograms of Bhattacharya dis-
tance based similarity s between the real pdf and the estimat-
ed Rayleigh distribution of odd Gabor filter based edge
response. It is obvious to observe for each case that the fit-
ness is good enough between them since most similarity val-
ues are over 0.85, which indicates as well that it is feasible to
character the real pdf by using the estimated Rayleigh distri-
bution. Thus based on the observed Rayleigh model as in
[18], the task of edge detection can be implemented.
a b

c d

Fig. 3. Histograms of Bhatt. Distance based similarity s between
4.2. Analysis of the sharpened edge response in odd Gabor

transform domain

In edge detection, the strategies of how to determine the
threshold to remove those pseudo edge pixels are another
extremely important procedure. Before bringing forward
an adaptive threshold-determining scheme we first intro-
duce a proposition (see Appendix A for its proof).

Proposition 2. Given variable X with pdffX ðxÞ ¼
x
r2

r
expð� x2

2r2
r
Þ; x > 0

0 else ði:e: variable X

8<
: obeys Rayleigh dis-
the estimated Rayleigh distribution and the real pdf (j = 0).
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tribution), then the variable Y = X2 will obey exponential

distribution, i.e. we have fY ðyÞ ¼
1
h expð� y

hÞ; y > 0
0; y 6 0

;

�
where h ¼ 2r2

r :

Let le, re be the mean and variance of exponential dis-
tribution, then it is easily to obtain le = h,re = h. To esti-
mate the parameter rr and h, a simple median estimation
method with low computing expense is adopted and we
haveZ median

0

1

h
exp � y

h

� �
dy ¼ 1

2
ð12Þ

Then rr and h can be obtained by

rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
median

2 logð2Þ

s
; h ¼ median

logð2Þ ð13Þ

For characterizing the sharpened edge response based on
the scale multiplication across two adjacent scale factors j
and j + 1 in odd Gabor transform domain, we suppose that
there exists strong correlation between edge response out-
puts Ej(x,y) and Ej+1 (x,y). To validate it, the Bhattacharya
distance is still utilized to character the degree of correla-
tion between them, which are denoted as spj;pjþ1

, sqj;qjþ1
,

respectively. Based on the same image database as in
Section 4.1, the distribution histograms of spj;pjþ1

, sqj;qjþ1

are shown in Fig. 4.
a b

c d

Fig. 4. Histograms of the degree of correlation for the odd Gabor fil
Whether the case of the degree of correlation spj;pjþ1
or

the case of the degree of correlation sqj;qjþ1
is concerned,

the assumption of strong correlation between Ej(x,y) and
Ej+1(x,y) can be ensured, which consequently illuminate
that the sharpened edge response Ej

s can be approximately
characterized by an exponential distribution according to
proposition 2, i.e. we have

fEj
s
ðej

sÞ ¼
1
h expð� ej

s
hÞ; ej

s > 0

0 else

(
ð14Þ
4.3. An adaptive threshold determining based on exponential

distribution

Now we can set a threshold T to distinguish those edge
pixels by analysis of the above sharpened edge response
output energy distribution fEj

s
ðej

sÞ. In [17], Voorhees et al.
have proposed a threshold selection method based on noise
removal probability P, and P can be given as:

P ¼
R T N

0
fEj

s
ðej

sÞdej
sR1

0 fEj
s
ðej

sÞdej
s

ð15Þ

then we have

T n ¼ �h � logð1� P Þ ð16Þ
Yet such threshold selection comes only from consider-
ation for noise removal and does not take adaptability
for edge detection. Based on such threshold selection
ter based edge responses across two adjacent scale factors (j = 0).
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strategy, large number of experiments show that lots of
details will be lost for large re, and whereas lots of pseudo
edges will emerge. In addition, the mean le has not been
considered for threshold determining. But based on a
large number of experiments and observations, we find
that there exist a non- linear relation of threshold with
the mean le and variance re of the exponential distribu-
tion. The threshold should be decreased correspondingly
to have a good visual effect of edge detection when the
Table 1
The detail information about the synthetic images

Name Size No. SNR Spe

Vertical images 256 * 256 nV = 6 100, 50, 10, 5, 2, 1 The
Circle images 256 * 256 nC = 6 100, 50, 10, 5, 2, 1 The

SNR=2 

a b

Fig. 5. ESMG based edge detecti

SNR=2 

a b

Fig. 6. ESMG based edge detect

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1 EGR
ESMG
Canny
Log

F 

Vertical images 

a b

Fig. 7. F measure curves for vertical an
mean of the distribution is larger. And at the same time,
the larger the variance re of the exponential distribution
is, the threshold should be increased correspondingly.
Generally speaking it is hard to give theoretically such
nonlinear relationship. But out of the above observations,
an adaptive threshold determining strategy in our edge
detection scheme is proposed as
T e ¼ le þ kðle; reÞre ð17Þ
cification

grayscale value is 110 for left part image and 140 for right part
grayscale value is 140 for background and 110 for the central circle area

SNR=1 

on results for vertical images.

SNR=1 

ion results for circle images.

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1
EGR
ESMG
Canny
LOG

F 

Circle images 

d circle images with different SNR.
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where k(le,re) is a nonlinear adaptive adjustment factor
with dependence on mean le and variance re, and takes
the following expression:

kðle; reÞ ¼ ðe0 � e1 � leÞ � exp � re

e2

� �
ð18Þ

where {ei—i = 0,1,2} are some coefficients which will be
given in Section 5.
1 2 3 4 5 6 7 8
0

0.6

1.2

1.8

2.4
EGR
ESMG
Canny
Log

A 

Vertical images 

a

Fig. 8. Localization accuracy A curves for ver

a

b

Fig. 9. ESMG based edge detect
4.4. Post-processing for thresholded edge response

In edge detection, post-processing is another important
step. Among gradient-based edge detection operators,
Canny’s non-max suppression and hysteretic thresholding
post-processing method [1] is popularly adopted. In our
case, the same post-processing scheme is performed. In
addition, the edge connectivity in the final edge map is
1 2 3 4 5 6 7 8
0

0.6

1.2

1.8

2.4
EGR
ESMG
Canny
Log

A 

 Circle images 

b

tical and circle images with different SNR.

ion results for Ledge image.
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restrained to no less than three pixels; otherwise, they will
be removed as noise.

5. Experimental results and analysis

Because of the subjectivity of edge detection, it is difficult
to compare the performance of two edge detectors on most
real-world natural images [19]. Here, we use some synthetic
[20] and real world images to test the effectiveness of ESMG.

5.1. Synthetic images

In our experiment, two groups of synthetic images, ver-
tical and circle images were tested. The detailed informa-
tion about the synthetic images is given in Table 1. To
evaluate the detection property of ESMG on synthetic
images, the measure F (Figure of Merit)[21] and the local-
ization accuracy A [14] are adopted:

F ¼ 1

maxðNI ;N AÞ
XNA

k¼1

1

1þ ad2ðkÞ
ð19Þ

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

d2ðiÞ

vuut ð20Þ
a

e f g

j k l

b

Fig. 10. Edge detection results of ‘Woman’ image: (a) and (b) original image a
(rw = 0.1) and edge maps based on ESMG, (e)–(i) edge maps based on Canny a
Canny and EGR operators with different scales for (c).
where NI is the number of the actual edges and NA is the
number of detected edges, d(k) denotes the distance from
the kth detected edge pixel to the corresponding ground
truth, a is a scaling constant set to be 1/9 in Pratt’s work.
N is the number of detected edges with d(k) 6 4.We can
find from Fun. (19) that the measure F reflects the visual
effect of detected edges. The greater the F, the better the
detection results. At the same time the measure A shows
the location accuracy. The smaller the A, the better the
location accuracy will be obtained. For space consideration
only the detection results of two synthetic images for each
group are shown. From Figs. 5 and 6 we can find that the
edge detection results are satisfactory even in the case of
SNR = 1.

In order to obtain the coefficients {ei—i = 0,1,2} pro-
posed in Fun.(18), the average ratio of the localization
accuracy A to the figure of merit F among all the synthetic
images is taken as the object function, and thus to obtain
the values of all eis can be formulated into an optimization
problem as:

feopt
i ji ¼ 0; 1; 2g ¼ min

ei

1

nV þ nC

XnV þnC

j¼1

Ajðei; i ¼ 0; 1; 2Þ
F jðei; i ¼ 0; 1; 2Þ

( )

ð21Þ
h i

m n

c d

nd edge map based on ESMG, (c) and (d) Gauss white noise added image
nd EGR operators with different scales for (a), (j)–(n) edge maps based on
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where nV and nC denote the number of vertical and
circle synthetic images, respectively. Generally speaking,
it is difficult to find the optimal solution of Fun. (21), thus
in this paper the greedy strategy is applied to obtaining
the sub-optimal solution as e0 = 13.5, e1 = �400,
e2 = 0.004.

Based on the measure F and A we tested four edge detec-
tion operators ESMG, Canny, LOG and EGR [18] on the
above two groups of synthetic images. As shown in Figs. 7
and 8, the figure of merit measure F based on ESMG keeps
stable with variation of SNR, i.e. ESMG is more insensitive
to noise. But as far as the location accuracy A is concerned,
the LOG operator has the worst location accuracy, and the
ESMG, Canny and EGR have similar location accuracy.
To consider both measure F and measure A, we can say
that ESMG takes on the best edge detection property. Note
that the Canny and Log algorithms mentioned above were
adopted from image toolbox of Matlab 6.5. The scale rc

for Canny operator is 2.0 and rg = 2.0 for LOG operator
and other parameters are assigned by default.

We also test the ESMG, EGR, Canny edge detection
operators on another synthetic image ‘ledge’ [22], which
contains a vertical square wave grating, a ring and two thin
diagonal lines. No matter in the case of the original image
or the one with Gauss white noise contaminated, the
a

e f g

j k l

b c

Fig. 11. Edge detection results of ‘Building’ image: (a) and (b) original image a
(rw = 0.1) and edge maps based on ESMG, (e)–(i) edge maps based on Canny a
Canny and EGR operators with different scales for (c).
ESMG operator can achieve good visual effects. In addi-
tion, the circle edges are all missed for both EGR and Can-
ny operators with the increase of smoothing scale.
However, it is also clear that the small smoothing scale is
highly sensitive to the noise Fig. 9.
5.2. Natural images

Based on ESMG, Canny and EGR edge operator, Figs.
10–14 show the edge detection results for some real world
natural images. For both single scale based Canny and
EGR edge operator, with the increase of smoothing scale
we can find that more and more local detail information
will be filtrated out such as Fig. 10(g) and Fig. 11(g), and
the inverse influence brought by noise will be weakened
greatly at the same time (see Fig. 12(l), Fig. 13(l) and
Fig. 14(l)). Moreover, the difficulty is also explicit for
finding a universal optimal smoothing scale, which corre-
sponds to the optimal visual effect of edge detection. That
is to say the optimal scale for some images may not be opti-
mal for other images. Of course, the visual effect of edge
detection will depend on the viewer’s evaluation criterion
ultimately.

For the real world images without being contaminated
by noise, the visual effects of edge detection based on
h i

m n

d

nd edge map based on ESMG, (c) and (d) Gauss white noise added image
nd EGR operators with different scales for (a), (j)–(n) edge maps based on



a

e f g h i

j k l m n

b c d

Fig. 12. Edge detection results of ‘Cup’ image: (a) and (b) original image and edge map based on ESMG, (c) and (d) Gauss white noise added image
(rw = 0.1) and edge maps based on ESMG, (e)–(i) edge maps based on Canny and EGR operators with different scales for (a), (j)–(n) edge maps based on
Canny and EGR operators with different scales for (c).
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ESMG can be comparable to Canny operator with optimal
scale (corresponding to optimal visual effect) that is vari-
able for different images, for example, Fig. 10(f) with
rc = 2.2 and Fig. 11(e) with rc = 1.4. But as far as noise
contaminated images, we can observe that the proposed
ESGM is superior to Canny edge operator with the same
optimal scale for noise free image as mentioned above.
The similar conclusion is also same with EGR operator.
One should note that from real application view it is no
sense to test all scales to obtain an optimal one for a given
image. The robust and good detection performance of the
proposed ESMG can contribute to the application of the
scale multiplication strategy, which effectively build a
bridge between detail keeping and noise resisting.
6. Conclusion

We proposed an adaptive edge detection technique based
on the multi scale analysis in odd Gabor transform domain
(ESMG). To overcome the shortcomings of original odd
Gabor-based edge response obtaining method, an improved
scheme is suggested. With adjacent scales multiplication in
odd Gabor transform domain, a sharpened edge response
output, which can more effectively resist the inverse influ-
ence from noise contamination on the performance of edge
detector, can be obtained. By analysis of edge response
based on odd Gabor filter with single scale, we show that
the above sharpened edge response can be approximately
characterized by an exponential distribution. Thus as an
important step for edge detection, an adaptive threshold-de-
termining scheme was also given, in which the nonlinear
relation between threshold and the mean le and variance
re of the obtained exponential distribution was explored.
In addition, the obtaining of values of coefficients involved
in adaptive adjustment factor was formulated into an opti-
mization problem with the average ratio of the localization
accuracy A to the figure of merit F among all the synthetic
images as object function, and at the same time the greedy
strategy was implemented to find the sub-optimal solutions
for them. The final experimental results on both the synthet-
ic and real world images show that our edge detection
technique is robust and takes on good detection
performance.
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Fig. 13. Edge detection results of ‘Bird’ image: (a) and (b) original image and edge map based on ESMG, (c) and (d) Gauss white noise added image
(rw = 0.1) and edge maps based on ESMG, (e)–(i) edge maps based on Canny and EGR operators with different scales for (a), (j)–(n) edge maps based on
Canny and EGR operators with different scales for (c).
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Fig. 14. Edge detection results of ‘Flower’ image: (a) and (b) original image and edge map based on ESMG, (c) and (d) Gauss white noise added image
(rw = 0.1) and edge maps based on ESMG, (e)–(i) edge maps based on Canny and EGR operators with different scales for (a), (j)–(n) edge maps based on
Canny and EGR operators with different scales for (c).
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Appendix A

Proposition 1. Let Go(x,y,rg,x,h) to be a 2-D odd Gabor

filter and g(x,y,rg) to be a Gaussian smoothing function with

scale rg. When GO(x,y,rg,x,h) is convolved with g(x,y,rg),

another odd Gabor filter Goðx; y;
ffiffiffi
2
p

rg;x=2; hÞ will be

obtained, i.e. we have c � Goðx; y;
ffiffiffi
2
p

rg;x=2; hÞ ¼
Goðx; y; rg;x; hÞ � gðx; y; rgÞ where c is a constant.
Proof. Set c1 ¼ 1
4p2r4

g
, then

Goðx;y;rg;x;hÞ�gðx;y;rgÞ

¼
Z þ1

�1

Z þ1

�1
Goðx�k;y�q;rg;x;hÞ�gðk;q;rgÞdkdq

¼ c1

Z þ1

�1

Z þ1

�1
expð�x2�2kxþ2k2þy2�2qyþ2q2

2r2
g

" #

�sinfx½ðx�kÞcosðhÞþðy�qÞsinðhÞ�gdkdq

¼ c1

Z þ1

�1

Z þ1

�1
expð�x2�2kxþ2k2þy2�2qyþ2q2

2r2
g

" #

�sinfx
2
½2ðx�kÞcosðhÞþ2ðy�qÞsinðhÞ�gdkdq

¼ c1 exp �x2þy2

4r2
g

 !

�
Z þ1

�1

Z þ1

�1
exp �x2�4kxþ4k2þy2�4qyþ4q2

4r2
g

" #

�sin
x
2
½xcosðhÞþy sinðhÞþðx�2kÞcosðhÞþðy�2qÞsinðhÞ�dkdq

¼ c1 expð�x2þy2

4r2
g

Þ
Z þ1

�1

Z þ1

�1
exp �ðx�2kÞ2þðy�2qÞ2

4r2
g

" #

� sin
x½xcosðhÞþy sinðhÞ�

2

�
cos

x½ðx�2kÞcosðhÞþðy�2qÞsinðhÞ�
2

þcos
x½xcosðhÞþy sinðhÞ�

2
�sin

x½ðx�2kÞcosðhÞþðy�2qÞsinðhÞ�
2

	
dkdq

¼ c1 exp �x2þy2

4r2
g

" #
sin

x
2

xcosðhÞþy sinðhÞ½ �

�
Z þ1

�1

Z þ1

�1
exp �ðx�2kÞ2þðy�2qÞ2

4r2
g

" #

�cos
x½ðx�2kÞcosðhÞþðy�2qÞsinðhÞ�

2
dkdq
þc1 exp �x2þy2

4r2
g

" #
cos

x
2
½xcosðhÞþy sinðhÞ�

�
Z 1

�1

Z 1

�1
exp �ðx�2kÞ2þðy�2qÞ2

4r2
g

" #

�sin
x
2
½ðx�2kÞcosðhÞþðy�2qÞsinðhÞ�dkdq

Since the second integration term can be found to be zero,
and then

Goðx; y; rg;x; hÞ � gðx; y; rgÞ

¼ Ac1 exp � x2 þ y2

4r2
g

" #
sin

x
2

x cosðhÞ þ y sinðhsÞ½ �

where

A¼
Z þ1

�1

Z þ1

�1
exp �ðx�2kÞ2þðy�2qÞ2

4r2
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x½ðx�2kÞcosðhÞþðy�2qÞsinðhÞ�

2
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¼r2
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g cos2ðhÞ=4Þ �expð�x2r2
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¼pr2
g expð�x2r2
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Now set c = Ac1, and we can have c � Goðx; y;
ffiffiffi
2
p

rg;x=2;
hÞ ¼ Goðx; y; rg;x; hÞ � gðx; y; rgÞ
Note: There exists in the original proof of the proposition
by Mehrotra [7] a slight mistake for derivation of the value
A. In addition, the orientation angleh of the odd Gabor
filter is also considered in our proof.
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Proposition 2. Given variable X with pdf fX ðxÞ ¼
x
r2

r
expð� x2

2r2
r
Þ; x > 0

0 else

�
(i.e. variable X obeys Rayleigh dis-

tribution), then variable Y = X2 will obey exponential distri-

bution, i.e. fY ðyÞ ¼
1
h expð� y

hÞ; y > 0
0; y 6 0

:

�
where h ¼ 2r2

r .

Proof. Let FY(y) be the pdf of variable Y, since
Y = X2 P 0, so FY(y) = 0 for y 6 0. For y > 0, we have
F Y ðyÞ ¼ P ðY 6 yÞ ¼ P ð� ffiffiffi

y
p
6 X 6

ffiffiffi
y
p Þ ¼

R ffiffiyp
� ffiffiyp fX ðxÞdx,

moreover the pdf fY(y) of variable Y can be obtained as:

fY ðyÞ ¼
1

2
ffiffi
y
p ½fX ð

ffiffiffi
y
p Þ � fX ð�

ffiffiffi
y
p Þ�

0

(
¼

1
h expð� y

hÞ; y > 0

0 else

(

where h ¼ 2r2
g. Thus we can say variable Y takes exponen-

tial distribution.
References

[1] J.F. Canny, A computational approach to edge detection, IEEE.
Trans. Pattern Anal. Mach. Intell. 8 (6) (1986) 679–698.

[2] S.M. Smith, J.M. Brady, SUSAN—A new approach to low level
image processing, Int. J. Comput. Vis. 23 (1) (1997) 45–78.

[3] D. Ziou, S. Tabbone, Edge detection techniques-an overview, Int. J.
Pattern Recognit. Image Anal. 8 (4) (1998) 537–559.

[4] P. Meer, B. Georgescu, Edge detection with embedded confidence,
IEEE Trans. PAMI 23 (12) (2001) 1351–1365.

[5] S. Ando, Image field categorization and edge/corner detection from
gradient covariance, IEEE Trans. PAMI 22 (2) (2000) 179–190.

[6] J.G. Daugman, Complete discrete 2-D Gabor transforms by neural
networks for image analysis and compression, IEEE Trans. Acoust.
Speech Signal Process. 36 (7) (1988) 1169–1179.
[7] R. Mehrotra, K.R. Namuduri, N. Ranganathan, Odd Gabor
filter-based edge detection, Pattern Recognit. 25 (12) (1992) 1479–
1494.

[8] T. Lindeberg, Scale-space theory: a basic tool for analysing structures
at different scales, J. Appl. Stat. 21 (2) (1994) 224–270.

[9] D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond.
B207 (1980) 187–217.

[10] S. Mallat, S. Zhong, Characterizationof signals from multi-scale
edges, IEEE Trans. PAMI 14 (7) (1992) 710–732.

[11] M.A. Brown, K.T. Blackwell, H.G. Khalak, et al., Multiscale edge
detection and feature binding: an integrated approach, Pattern
Recognit. 31 (10) (1998) 1479–1490.

[12] D. Ziou, S. Tabbone, A multi-scale edge detector, Pattern Recognit.
26 (9) pp. 1305–1314.

[13] D.J. Park, K.M. Nam, R.H. Park, Multiresolution edge-detection
techniques, Pattern Recognit. 28 (2) (1995) 211–229.

[14] L. Zhang, P. Bao, Edge detection by scale multiplication in wavelet
domain, Pattern Recognit. Lett. 23 (14) (2002) 1771–1784.

[15] Y. Xu, J.B. Weaver, et al., Wavelet transform domain filters: a
spatially selective noise filtration technique, IEEE Trans. Image
Process. 3 (6) (1994) 747–758.

[16] B.M. Sadler, A. Swami, Analysis of multiscale products for step
detection and estimation, IEEE Trans. Inform. Theory 45 (3) (1999)
1043–1051.

[17] H. Voorhees, T. Poggio, Detecting textons and texture boundaries in
natural images, in: Proc. ICCV (1987) pp. 250–258.

[18] Zhenfeng Zhu, Hanqing Lu, Edge detection based on odd Gabor
filter and Rayleigh distribution, J. Image Graph. China 10 (7) (2005)
821–827.

[19] M. Heath, S. Sarkar, T. Sanocki, K. Bowyer, Comparison of edge
detector: a methodology and initial study, Comput. Vis. Image
Understand. 69 (1) (1998) 38–54.

[20] W. Zhou, A new method of edge detection [EB/OL], <http://
prettyview.com/edge/nsedge.shtml#to>.

[21] I.E. Abdou, W.K. Pratt, Quantitative design and evaluation of
enhancement/ thresholding edge detectors, Proc. IEEE 67 (5) (1979)
753–763.

[22] <http://w3.ualg.pt/~dubuf/pubdat/ledge/>.

http://prettyview.com/edge/nsedge.shtml#to
http://prettyview.com/edge/nsedge.shtml#to
http://w3.ualg.pt/~dubuf/pubdat/ledge/

	Scale multiplication in odd Gabor transform domain for edge detection
	Introduction
	Odd Gabor filter based edge detection
	Scale multiplication in odd Gabor transform domain
	The adaptive threshold determining for sharpened odd Gabor response
	Rayleigh distribution of edge response based on odd Gabor filter
	Analysis of the sharpened edge response in odd Gabor transform domain
	An adaptive threshold determining based on exponential distribution
	Post-processing for thresholded edge response

	Experimental results and analysis
	Synthetic images
	Natural images

	Conclusion
	Acknowledgments
	Appendix A
	References


